Analysis of the Superconvergent Patch Recovery Technique and a Posteriori Error Estimator in the Finite Element Method (i)
نویسنده
چکیده
SUMMARY This is the rst in a series of two papers in which the patch recovery technique proposed by Zienkiewicz and Zhu is analyzed. In this work, it is proved that the recovered derivative by the least squares tting is superconvergent for the two point boundary value problems. Further the a posteriori error estimator based on the recovery technique is show to be asymptotically exact. This connrms the computational results obtained in 1] and 2].
منابع مشابه
Analysis of the Superconvergent Patch Recovery Technique and a Posteriori Error Estimator in the Finite Element Method (ii)
SUMMARY This is the second in a series of two papers in which the patch recovery technique proposed by Zienkiewicz and Zhu 1]-3] is analyzed. In the rst paper 4], we have shown that the recovered derivative by the least squares tting is superconvergent for the two point boundary value problems. In the present work, we consider the two dimensional case in which the tensor product elements are us...
متن کاملCan We Have Superconvergent Gradient Recovery Under Adaptive Meshes?
~ We study. adaptive finite element methods for elliptic problems with domain corner singularities. Our model problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an adaptive mesh (gauged by a discrete mesh density function) under which the recovered.gradient by the Polynomial Preserving Recovery (PPR) is superconvergent. Second...
متن کاملEnhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent...
متن کاملSuperconvergence of partially penalized immersed finite element methods
The contribution of this paper contains two parts: first, we prove a supercloseness result for the partially penalized immersed finite element (PPIFE) methods in [T. Lin, Y. Lin, and X. Zhang, SIAM J. Numer. Anal., 53 (2015), 1121–1144]; then based on the supercloseness result, we show that the gradient recovery method proposed in our previous work [H. Guo and X. Yang, J. Comput. Phys., 338 (20...
متن کاملLocally equilibrated stress recovery for goal oriented error estimation in the extended finite element method
Goal oriented error estimation and adaptive procedures are essential for the accurate and efficient evaluation of numerical simulations that involve complex domains. By locally improving the approximation quality we can solve expensive problems which could result intractable otherwise. Here, we present an error estimation technique for enriched finite element approximations that is based on an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007